When Traffic Flow Prediction Meets Wireless Big Data Analytics
نویسندگان
چکیده
Traffic flow prediction is an important research issue for solving the traffic congestion problem in an Intelligent Transportation System (ITS). Traffic congestion is one of the most serious problems in a city, which can be predicted in advance by analyzing traffic flow patterns. Such prediction is possible by analyzing the real-time transportation data from correlative roads and vehicles. This article first gives a brief introduction to the transportation data, and surveys the state-ofthe-art prediction methods. Then, we verify whether or not the prediction performance is able to be improved by fitting actual data to optimize the parameters of the prediction model which is used to predict the traffic flow. Such verification is conducted by comparing the optimized time series prediction model with the normal time series prediction model. This means that in the era of big data, accurate use of the data becomes the focus of studying the traffic flow prediction to solve the congestion problem. Finally, experimental results of a case study are provided to verify the existence of such performance improvement, while the research challenges of this data-analytics-based prediction are presented and discussed.
منابع مشابه
Implementation of Random Forest Algorithm in Order to Use Big Data to Improve Real-Time Traffic Monitoring and Safety
Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the pe...
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملSpatiotemporal Traffic Prediction using Semantic Traffic Analytics and Reasoning(STAR) With Big Data Environment
In Urban Mobility Report, delays due to heavy traffic costing Americans $78 billion in the form of 4.2 billion lost hours and 2.9 billion gallons of wasted fuel. In addition, 2/3 of traffic delays are caused not by recurring congestion but by point-based spontaneous congestion due to traffic incidences. STAR-CITY, which integrates (human and machine-based) sensor data using variety of formats, ...
متن کاملBig Data Analytics for Wireless and Wired Network Design: A Survey
Currently, the world is witnessing a mounting avalanche of data due to the increasing number of mobile network subscribers, Internet websites, and online services. This trend is continuing to develop in a quick and diverse manner in the form of big data. Big data analytics can process large amounts of raw data and extract useful, smaller-sized information, which can be used by different parties...
متن کاملSpatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.08024 شماره
صفحات -
تاریخ انتشار 2017